Indexed by:
Abstract:
The commercial application of flexible lithium-sulfur batteries is severely hindered by poor conductivity, low active material loading, polysulfide shuttle effects, and sluggish redox kinetics. Herein, we developed a unique three-dimensional (3D) conductive network framework decorated with NiCo bimetallic particles. The 3D porous carbon conductive network skeleton formed by crosslinked carbon nanotubes effectively mitigates the volume expansion of sulfur and accommodates abundant active materials for high discharge capacity. Meanwhile, the NiCo bimetallic combines the catalytic role of Ni in sulfur reduction and Co in sulfur oxidation to achieve improved kinetics of the entire conversion of sulfur. Most importantly, the sulfur host synergizes the conducting CNTs and catalytically active bimetallic, increasing conductance and accelerating reaction kinetics, resulting in a significant improvement in rate performance. Consequently, the cells equipped with NiCo@CNT-S cathode exhibit a low-capacity decay rate of only 0.07% per cycle over 400 cycles at 1C, and an ultra-high initial specific capacity of 1030 mAh g- 1 at a high rate of 5C. Notably, the pouch cell assembled with the NiCo@CNT-S could deliver a high areal discharge capacity of 8.2 mAh cm- 2 at 0.1C, with a sulfur loading of 7.1 mg cm-2 and an E/S ratio of 7.1 mu L mg-1. This work provides novel structural design and mechanism insights for the practical application of flexible lithium-sulfur batteries.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2025
Volume: 506
1 3 . 4 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1