Indexed by:
Abstract:
In this work, an auto-identify sensor was constructed for rapid and high-precision detection of L-histidine. The proposed strategy is based on the auto-identify algorithm and the aggregation of alkynyl and azide functionalized gold nanoparticles induced by the Cu+ catalyzed azides and alkynes cycloaddition (CuAAC) reaction. Specially, the color of scattering light spots for the aggregated gold nanoparticle (AuNPs) caused by CuAAC reaction was quite different from that of the monomers. However, L-histidine can bind to Cu2+ and inhibits the production of Cu+, hence preventing the aggregation of AuNPs. Therefore, there is a distinct change of color as the addition of L-histidine under dark-field microscopy. Then, L-histidine can be quantitatively detected by combining the color change with the Meanshift algorithm accurately and automatically. Such proposed method has been successfully applied for the detection of L-histidine in serum sample with satisfying result. (C) 2021 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANALYTICA CHIMICA ACTA
ISSN: 0003-2670
Year: 2021
Volume: 1187
6 . 9 1 1
JCR@2021
5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2