• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Xie, Yonghui (Xie, Yonghui.) [1] | Ao, Juan (Ao, Juan.) [2] | Zhang, Li (Zhang, Li.) [3] | Shao, Yeqing (Shao, Yeqing.) [4] | Zhang, Hong (Zhang, Hong.) [5] (Scholars:张红) | Cheng, Shuying (Cheng, Shuying.) [6] (Scholars:程树英) | Wang, Xinghui (Wang, Xinghui.) [7] (Scholars:王星辉)

Indexed by:

EI Scopus SCIE

Abstract:

With the exceptional merits of high energy density, low cost, and environmental friendliness, lithium-sulfur batteries are considered to be one of the most promising next-generation flexible rechargeable batteries. How-ever, the notorious "shuttle effect " has seriously hindered their practical applications. Herein, a strategy for designing multi-functional bilayer carbon structures is proposed, specifically, by employing a micrometer-thick graphene nanoflowers (GF) layer to encapsulate a micrometer-scale hybrid network skeleton composed of metallic Co and carbon nanotubes (CNT) as a flexible sulfur cathode host (Co/CNT@GF). Beneficial from the merits of chemical adsorption, electrocatalysis and volume expansion mitigation from the internal skeleton as well as the micrometer-level physical domain confinement by the external GF layer, the developed host could chemically trap, electrochemically catalyze, physically block and storage the lithium polysulfides. Due to the synergistic effect of these functions, the Co/CNT@GF-S delivers a superior discharge capacity of 799 mAh g(-1) with a decay rate as low as 0.08 % per cycle after 400 cycles at 1 C. Even at a high sulfur loading of 8.16 mg cm(-2), the average discharge capacity is as high as 5.05 mAh cm(-2) in 100 cycles. This work does not only contribute to the rational design of multi-functional bilayer structures but also offers a novel design method for the commercialization of flexible lithium-sulfur batteries with high-energy-density.

Keyword:

Graphene nanoflower Li -S batteries Lithium polysulfides Metal-organic frameworks Plasma -enhanced chemical vapor deposition Synergistic effects

Community:

  • [ 1 ] [Xie, Yonghui]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 2 ] [Ao, Juan]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 3 ] [Shao, Yeqing]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 4 ] [Zhang, Hong]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 5 ] [Cheng, Shuying]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 6 ] [Wang, Xinghui]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
  • [ 7 ] [Xie, Yonghui]Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Fujian, Peoples R China
  • [ 8 ] [Wang, Xinghui]Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Fujian, Peoples R China
  • [ 9 ] [Zhang, Li]Nanyang Technol Univ, Rolls RoyceNTU Corp Lab, 65 Nanyang Dr, Singapore 637460, Singapore
  • [ 10 ] [Cheng, Shuying]Jiangsu Collaborat Innovat Ctr Photovolta Sci & En, Changzhou 213000, Peoples R China
  • [ 11 ] [Wang, Xinghui]Jiangsu Collaborat Innovat Ctr Photovolta Sci & En, Changzhou 213000, Peoples R China

Reprint 's Address:

  • [Wang, Xinghui]Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China;;[Wang, Xinghui]Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350108, Fujian, Peoples R China;;[Wang, Xinghui]Jiangsu Collaborat Innovat Ctr Photovolta Sci & En, Changzhou 213000, Peoples R China;;

Show more details

Related Keywords:

Source :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

Year: 2023

Volume: 451

1 3 . 4

JCR@2023

1 3 . 4 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:35

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 71

SCOPUS Cited Count: 71

ESI Highly Cited Papers on the List: 1 Unfold All

  • 2023-5

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Online/Total:141/10019177
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1