Indexed by:
Abstract:
Developing the Co-based catalysts with high reactivity for the sulfate radical (SO4−·)–based advanced oxidation processes (SR-AOPs) has been attracting numerous attentions. To improve the peroxymonosulfate (PMS) activation process, a novel Co-based catalyst simultaneously modified by bamboo carbon (BC) and vanadium (V@CoO-BC) was fabricated through a simple solvothermal method. The atenolol (ATL) degradation experiments in V@CoO-BC/PMS system showed that the obtained V@CoO-BC exhibited much higher performance on PMS activation than pure CoO, and the V@CoO-BC/PMS system could fully degrade ATL within 5 min via the destruction of both radicals (SO4−· and O2−··) and non-radicals (1O2). The quenching experiments and electrochemical tests revealed that the enhancing mechanism of bamboo carbon and V modification involved four aspects: (i) promoting the PMS and Co ion adsorption on the surface of V@CoO-BC; (ii) enhancing the electron transfer efficiency between V@CoO-BC and PMS; (iii) activating PMS with V3+ species; (iv) accelerating the circulation of Co2+ and Co3+, leading to the enhanced yield of reactive oxygen species (ROS). Furthermore, the V@CoO-BC/PMS system also exhibited satisfactory stability under broad pH (3–9) and good efficiency in the presence of co-existing components (HCO3−, NO3−, Cl−, and HA) in water. This study provides new insights to designing high-performance, environment-friendly bimetal catalysts and some basis for the remediation of antibiotic contaminants with SR-AOPs. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Environmental Science and Pollution Research
ISSN: 0944-1344
Year: 2024
Issue: 25
Volume: 31
Page: 36761-36777
0 . 0 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: